sexta-feira, 12 de novembro de 2010

Introdução

Olá, Pessoal!!!!!

  Atualmente, existe uma grande necessidade de buscar fontes de energia renováveis, já que as principais fontes energéticas utilizadas não podem ser reaproveitadas, além de fazerem mal ao meio ambiente. Hoje se fala tanto de sustentabilidade, mas falta vontade política e econômica, para que a energia limpa seja ampla e devidamente utilizadas.



  Neste blog você conhecerá o que é e quais são as principais fontes de energia renováveis.  

Energia Térmica

Energia térmica (ET) é uma forma de energia que está diretamente associada à temperatura absoluta T de um sistema, e corresponde à soma das energias cinéticas Eci que suas partículas constituintes possuem em virtude de seus movimentos de translação, vibração ou rotação. Assume-se um referencial inercial sob o centro de massa do sistema. A energia térmica de um corpo macroscópico corresponde à soma das energias cinéticas de seus constituintes microscópicos. À transferência de energia térmica de um sistema termodinâmico a outro se dá o nome de calor.

Na maioria das reações químicas expontâneas exoenergéticas a energia inicialmente armazenada na forma de energia potencial elétrica na distribuição eletrônica dos elétrons na estrutura dos reagentes é convertida em energia térmica armazenada nas partículas dos produtos, o que mantém a energia interna do sistema formado pelos reagentes e/ou produtos constante em obediência à lei da conservação da energia mas leva a um considerável aumento na temperatura absoluta do sistema como um todo. Este sistema aquecido é então utilizado como a fonte quente (fonte de calor) em uma máquina térmica que tenha por função transformar a energia térmica da fonte quente em trabalho. No processo energia térmica acaba renegada à fonte fria.
O calor na verdade é o fluxo de energia que se dá entre dois sistemas devido exclusivamente à diferença de temperatura entre esses sistemas ou corpos.
A energia térmica (e o calor) medem-se em unidade de energia: o Joule no sistema SI, ou de forma habitual a caloria.
A definição de caloria é a quantidade de calor (energia) necessária para elevar em 1 grama de água de 14,5 graus Celsius (oC) para 15,5oC.

·         Processo para produção de energia térmica
  Um hidrocarboneto, tal como por exemplo o metano, é queimado oxidativamente com produção de energia térmica. Além disso, o hidrocarboneto não é conduzido diretamente a uma fase da reação de combustão, mas a uma fase de reação de craqueamento e, em seguida a esta, eventualmente a uma fase de reação de catálise. Na fase da reação de craqueamento, faz-se reagir o hidrocarboneto com dióxido de carbono proveniente da fase da reação de combustão formando gás de síntese. Este é queimado em parte na fase da reação de combustão com um agente oxidante como, por exemplo, ar. Na outra parte faz-se reagir o gás de síntese na fase da reação de catálise formando um composto de carbono que contém oxigênio.Para utilização à parte, retira-se este do processo de circulação.

Energia Maremotriz

  Energia maremotriz é o modo de geração de eletricidade através da utilização da energia contida no  movimento de massas de água devido às marés. Dois tipos de energia maremotriz podem ser obtidas: energia cinética das correntes devido às marés e energia potencial pela diferença de altura entre as marés alta e baixa.
Em qualquer local a superfície do oceano oscila entre pontos altos e baixo, chamados marés, a cada 12h e 25min. Em certas baías e estuários, como junto ao Monte Saint-Michel , no estuário do rio Rance, na França, ou em São Luís, no Brasil, essas marés são bastante amplificadas, podendo atingir alturas da ordem de 15 metros.
 
  As gigantescas massas de água que cobrem dois terços do planeta constituem o maior coletor de energia solar imaginável. As marés, originadas pela atração lunar, também representam uma tentadora fonte energética. Em conjunto, a temperatura dos oceanos, as ondas e as marés poderiam proporcionar muito mais energia do que a humanidade seria capaz de gastar — hoje ou no futuro, mesmo considerando que o consumo global simplesmente dobra de dez em dez anos.  A energia das marés é obtida de modo semelhante ao da energia hidrelétrica.

  Trata-se de uma obra complexa de Engenharia hidráulica. Constrói-se uma barragem, formando-se um reservatório junto ao mar. Quando a maré é alta, a água enche o reservatório, passando através da turbina hidráulica, tipo bulbo, e produzindo energia elétrica. Na maré baixa, o reservatório é esvaziado e a água que sai do reservatório passa novamente através da turbina, em sentido contrário, produzindo a energia elétrica. Este tipo de fonte é também usado no Japão, na França e na Inglaterra. A primeira usina maremotriz construída no mundo para geração de electricidade foi a de La Rance, em 1963.


  A construção de usina maremotrizes poderá ser uma opção para um futuro próximo, quando o preço do barril de petróleo atingir níveis mais elevados. Deve-se levar em conta também o impacto ambiental que a construção dessas usinas poderá causar.
  As alterações das amplitudes das marés previstas pelo modelo em todo o conjunto Baía de Fundy e Golfo de Maine são menores quando comparadas com as variações provocadas por fenômenos naturais, tais como, ventos fortes, tempestades, etc... Estes fenômenos as vezes causam ondas com mais de 2 metros, o que é muito maior do que os 15 cm de alteração previsto pelo nosso modelo. Na região de Boston, o movimento da crosta terrestre, indica um afundamento da crosta a razão de 15 a 20cm por século.
  Em áreas mais sensíveis às variações das marés, as consequencias podem ser danosas com o aumento das inundações. As correntes marítimas também se alterarão com a variação dos níveis da maré, que com o seu aumento, causariam variações nas temperaturas das águas superficiais e profundas. Com o aumento dos níveis de maré a velocidade da corrente aumentaria e isto provocaria uma agitação maior, misturando as águas superficiais e profundas, igualando sua temperatura que normalmente possuía um diferencial maior ( no verão as águas superficiais são mais quentes que as profundas). Correntes mais rápidas podem também causar mais erosão ao longo da costa, além de atrapalhar a navegação marítima em locais onde já existia certa dificuldade.
  Zonas entre marés(aquelas que são alternadamente inundadas pelas marés), como os mangues, abrigam ecossistemas complexos que podem ou não se adaptarem às mudanças nas zonas de limite de marés. Se por ventura forem construídos diques para deter as inundações, os mangues podem ser destruídos totalmente.

  Além disso a construção dessas barragens podem cruzar a migração de algumas espécies de peixes e não se conhece se eles podem ser redirecionados para passagens especiais, para evitar as turbinas.
  Os efeitos das usinas maremotrizes podem ser menos problemáticos do que outros tipos de usinas geradoras de energia; por isso o aproveitamento das marés é um atrativo recurso de energia renovável e não poluente.
  O trabalho mostrou que os modelos de marés são agora corretos o suficiente para prever os efeitos das barragens das usinas no comportamento das marés.

terça-feira, 9 de novembro de 2010

Energia Hidráulica

  A energia hidráulica ou energia hídrica é a energia obtida a partir da energia potencial de uma massa de água. A forma na qual ela se manifesta na natureza é nos fluxos de água, como rios e lagos e pode ser aproveitada por meio de um desnível ou queda d'água. Pode ser convertida na forma de energia mecânica (rotação de um eixo) através de turbinas hidráulicas ou moinhos de água. As turbinas por sua vez podem ser usadas como acionamento de um equipamento industrial, como um compressor, ou de um gerador elétrico, com a finalidade de prover energia elétrica para uma rede de energia.
 
  No Brasil, devido a sua enorme quantidade de rios, a maior parte da energia elétrica disponível é proveniente de grandes usinas hidrelétricas. A energia primária de uma hidrelétrica é a energia potencial gravitacional da água contida numa represa elevada. Antes de se tornar energia elétrica, a energia primária deve ser convertida em energia cinética de rotação. O dispositivo que realiza essa transformação é a turbina. Ela consiste basicamente em uma roda dotada de pás, que é posta em rápida rotação ao receber a massa de água. O último elemento dessa cadeia de transformações é o gerador, que converte o movimento rotatório da turbina em energia elétrica.

  •   Gerador
  O gerador é um dispositivo que funciona com base nas leis da indução eletromagnética. Em sua forma mais simples, consiste numa espira em forma de um círculo. Ela fica imersa num campo magnético e roda em torno de um eixo perpendicular às linhas dessa área.
  Quando fazemos a espira girar com movimento regular, o fluxo magnético que atravessa sua superfície varia continuamente. Surge assim, na espira, uma corrente induzida periódica. A cada meia volta da espira o sentido da corrente se inverte, por isso ela recebe o nome de corrente alternada.

Energia Geotérmica

  Energia geotérmica ou energia geotermal é a energia obtida a partir do calor proveniente da Terra, mais precisamente do seu interior. Devido a necessidade de se obter energia elétrica de uma maneira mais limpa e em quantidades cada vez maiores, foi desenvolvido um modo de aproveitar esse calor para a geração de eletricidade. Hoje a grande parte da energia elétrica provém da queima de combustíveis fósseis, como o petróleo e o carvão mineral, porém, esses métodos são muito poluentes.
 
  Para que possamos entender como é aproveitada a energia do calor da Terra devemos primeiramente entender como nosso planeta é constituído. A Terra é formada por grandes placas, que nos mantém isolados do seu interior, no qual encontramos o magma, que consiste basicamente em rochas derretidas. Com o aumento da profundidade a temperatura dessas rochas aumenta cada vez mais, no entanto, há zonas de intrusões magmáticas, onde a temperatura é muito maior. Essas são as zonas onde há elevado potencial geotérmico.

A primeira tentativa de gerar eletricidade de fontes geotérmicas se deu em 1904 em Larderello na região da Toscana, na Itália. Contudo, esforços para produzir uma máquina para aproveitar tais fontes foram mal sucedidos pois as máquinas utilizadas sofreram destruição devido a presença de substâncias químicas contidas no vapor. 

  Já em 1913, uma estação de 250 kW foi produzida com sucesso e por volta da Segunda Guerra Mundial 100 MW estavam sendo produzidos, mas a usina foi destruída na Guerra. Por volta de 1970, um campo de gêiseres na Califórnia estava produzindo 500 MW de eletricidade. A exploração desse campo foi dramática, pois em 1960 somente 12 MW eram produzidos e em 1963 somente 25 MW. México, Japão, Filipinas, Quénia e Islândia também têm expandido a produção de eletricidade por meio geotérmico.
 
Na Nova Zelândia o campo de gases de Wairakei, na Ilha do Norte, foi desenvolvido por volta de 1950. Em 1964, 192 MW estavam sendo produzidos, mas hoje em dia este campo está acabando.
Portugal conta com uma moderna central geotérmica em funcionamento na Ilha de São Miguel, Açores. Esta central foi construída pela multinacional israelita Ormat. Isto para além outra mais antiga, e está a ser acabada uma nova na Ilha Terceira, Açores.

  • Vantagens e Desvantagens:
  Aproximadamente todos os fluxos de água geotérmicos contém gases dissolvidos, sendo que estes gases são enviados a usina de geração de energia junto com o vapor de água. De um jeito ou de outro estes gases acabam indo para a atmosfera. A descarga de vapor de água e CO2 não são de séria significância na escala apropriada das usinas geotérmicas.

  Por outro lado, o odor desagradável, a natureza corrosiva, e as propriedades nocivas do ácido sulfídrico (H2S) são causas que preocupam. Nos casos onde a concentração de ácido sulfídrico (H2S) é relativamente baixa, o cheiro do gás causa náuseas. Em concentrações mais altas pode causar sérios problemas de saúde e até a morte por asfixia.

  É igualmente importante que haja tratamento adequado a água vinda do interior da Terra, que invariavelmente contém minérios prejudiciais a saúde. Não deve ocorrer simplesmente seu despejo em rios locais, para que isso não prejudique a fauna local.

  Quando uma grande quantidade de fluido aquoso é retirada da Terra, sempre há a chance de ocorrer subsidência na superfície. O mais drástico exemplo de um problema desse tipo numa usina geotérmica está em Wairakei, Nova Zelândia. O nível do superfície afundou 14 metros entre 1950 e 1997 e está deformando a uma taxa de 0,22 metro por ano, após alcançar uma taxa de 0,48 metros por ano em meados dos anos 70. Acredita-se que o problema pode ser atenuado com re-injeção de água no local. Há ainda o inconveniente da poluição sonora que afligiria toda a população vizinha ao local de instalação da usina, pois, para a perfuração do poço, é necessário o uso de maquinário semelhante ao usado na perfuração de poços de petróleo.

Energia Nuclear

Energia nuclear é a energia liberada numa reação nuclear, ou seja, em processos de transformação de núcleos atômicos. Alguns isótopos de certos elementos apresentam a capacidade de se transformar em outros isótopos ou elementos através de reações nucleares, emitindo energia durante esse processo. Baseia-se no princípio da equivalência de energia e massa (observado por Albert Einstein), segundo a qual durante reações nucleares ocorre transformação de massa em energia. Foi descoberta por Hahn, Straßmann e Meitner com a observação de uma fissão nuclear depois da irradiação de urânio com nêutrons.
 
  A tecnologia nuclear tem a finalidade de aproveitar a energia nuclear, convertendo o calor emitido na reação em energia elétrica. Isso pode acontecer controladamente em reator nuclear ou descontroladamente em bomba atômica. Em outras aplicações aproveita-se da radiação ionizante emitida.

A reação nuclear é a modificação da composição do núcleo atômico de um elemento, podendo transformar-se em outro ou outros elementos. Esse processo ocorre espontaneamente em alguns elementos. O caso mais interessante é a possibilidade de provocar a reação mediante técnicas de bombardeamento de nêutrons ou outras partículas.

  Existem duas formas de reações nucleares: a fissão nuclear, onde o núcleo atômico subdivide-se em duas ou mais partículas; e a fusão nuclear, na qual ao menos dois núcleos atômicos se unem para formar um novo núcleo.

  Apenas um exemplo das mais de 1000 possíveis fissões de urânio-235: Urânio captura um nêutron, torna-se instável e fraciona em bário e criptônio com emissão de dois nêutrons.

  A principal vantagem da energia nuclear obtida por fissão é a não utilização de combustíveis fósseis. Considerada como vilã no passado, a Energia Nuclear passou gradativamente a ser defendida por ecologistas de nome como James E. Lovelock por não gerarem gases de efeito estufa. Estes ecologistas defendem uma virada radical em direção à energia nuclear como forma de combater o aquecimento global.

  Em comparação com a geração hidrelétrica, a geração a partir da energia nuclear apresenta a vantagem de não necessitar o alagamento de grandes áreas para a formação dos lagos de reservatórios, evitando assim a perda de áreas de reservas naturais ou de terras agriculturáveis, bem como a remoção de comunidades inteiras das áreas que são alagadas. Outra vantagem da energia nuclear em relação à geração hidrelétrica é o fato de que a energia nuclear é imune à alterações climáticas futuras que porventura possam trazer alterações no regime de chuvas.

Desvantagens:

  • Resíduos Radioativos (lixo atômico)
  Já que a maior parte (cerca de 96%) do combustível nuclear queimado é constituída de Urânio natural, uma grande parte do combustível utilizado nos reatores nucleares é reprocessado em plantas de reprocessamento como a Urenco no Novo México. Cerca de 60% do combustível nuclear é mandado diretamente para o reprocessamento. O reprocessamento visa re-enriquecer o urânio exaurido, tornando possível que ele seja novamente utilizado como combustível.
  A parte do combustível que nao é reprocessada imediatamente é armazenada para reprocessamento futuro, ou é armazenada semi-definitivamente em depósito próprio. Cerca de 4% do total do combustível queimado é constituído dos chamados produtos de fissao e da série dos actinídeos, que são originados a partir da fissao do combustível nuclear. Estes podem incluir elementos altamente radioativos como o Plutônio, Amerício e Césio. Atualmente esses elementos sao separados do urânio que será reprocessado e são armazenados em depósitos projetados especificamente para armazenamento de elementos radioativos ou utilizados em pesquisas.
  O Plutônio têm valor estratégico e científico particularmente alto por ser utilizado na fabricaçao de armamentos nucleares e também para pesquisas relacionadas aos chamados Fast Breed Reactors, que são reatores que operam utilizando uma combinaçao de urânio natural e plutônio como combustível.
  A geração de rejeito radioativo de usinas nucleares é normalmente baixa, mas representa um problema pois os elementos contidos no combustível queimado, pricipalmente os produtos de fissão, demoram um tempo muito longo para decairem em outros elementos e apresentam alta radioatividade, portanto é necessário que eles fiquem confinados em um depósito próprio onde não possa haver nem interferência humana externa nem interferência ambiental (já que a inteferência ambiental pode causar vazamentos e deslocamento dos elementos).

  • Segurança
  Há uma certa confusão do público em relação a acidentes com radiação. Uma usina nuclear, justamente por lidar com algo potencialmente perigoso e que já resultou em acidentes no passado, tem normas de segurança tanto nacionais quanto internacionas que garantem que cada procedimento seja feito de acordo com todos os padrões de segurança. A Agência Internacional de Energia Atômica é um orgão internacional regulatório que salva-guarda a construção e uso da energia nuclear no mundo. Os requisitos para a obtenção de salva-guarda são severos e reconhecidos pela exigência em relação à segurança e operação de usinas nucleares; sem uma salva-guarda, um país é proibido de realizar a construção de instalações nucleares. Um dos requisitos para a obtenção de salva-guarda é que a instalação em questão deve ser supervisionada durante toda a sua existência por um grupo internacional de supervisores especializados em segurança radiológica e nuclear.

  • Gases de Estufa
  A produção de gases de estufa de uma usina núclear comum está de 3 a 6 vezes maior comparada com a energia hídrica e éolica, considerando o processo todo necessário para operá-la. (A produção de gases de estufa de uma usina de carvão tem um fator de 80).

Produção no Brasil:

  Na área de geração de energia, o Brasil é um dos poucos países do mundo a dominar todo o processo de fabricação de combustível para usinas nucleares. O processo de enriquecimento isotópico do urânio por ultracentrifugação, peça estratégica dentro do chamado ciclo do combustível nuclear, é totalmente de domínio brasileiro. Hoje, o combustível utilizado nos reatores de pesquisa brasileiros pode ser totalmente produzido no país.

Energia Solar

  A energia solar é a designação dada a qualquer tipo de captação de energia luminosa (e, em certo sentido, da energia térmica) proveniente do sol, e posterior transformação dessa energia captada em alguma forma utilizável pelo homem, seja directamente para aquecimento de água ou ainda como energia eléctrica ou mecânica.
  As plantas utilizam diretamente essa energia no processo de fotossíntese. Nós usamos essa energia quando queimamos lenha ou combustíveis minerais. Existem técnicas experimentais para criar combustível a partir da absorção da luz solar em uma reação química de modo similar à fotossíntese vegetal - mas sem a presença destes organismos.
  A radiação solar, juntamente com outros recursos secundários de alimentação, tal como a energia eólica e das ondas, hidro-electricidade e biomassa, são responsáveis por grande parte da energia renovável disponível na terra. Apenas uma minúscula fracção da energia solar disponível é utilizada.
  A Terra recebe 174 petawatts (GT) de radiação solar (insolação) na zona superior da atmosfera. Dessa radiação, cerca de 30% é reflectida para o espaço, enquanto o restante é absorvido pelas nuvens, mares e massas terrestres. O espectro da luz solar na superfície da Terra é mais difundida em toda a gama visível e infravermelho e uma pequena gama de radiação ultravioleta.

  O total de energia solar absorvida pela atmosfera terrestre, oceanos e as massas de terra é de aproximadamente 3.850.000 exajoules (EJ) por ano.

A energia solar pode ser aproveitado em diferentes níveis em todo o mundo. Consoante a localização geográfica, quanto mais perto do equador, mais energia solar pode ser potencialmente captada.
As áreas de deserto, onde as nuvens são baixas e estão localizadas em latitudes próximas ao equador são mais favoráveis à captação energia solar.Os desertos que se encontram relativamente perto de zonas de maior consumo em países desenvolvidos têm a sofisticação técnica necessária para a captura de energia solar realizações estão cada vez mais importante como o Deserto de Mojave (Califórnia), onde existe uma central de energia solar com uma capacidade total de 354 MW.
De acordo com um estudo publicado em 2007 pelo Conselho Mundial da Energia, em 2100, 70% da energia consumida será de origem solar.
Vantagens:
  • A energia solar não polui durante seu uso. A poluição decorrente da fabricação dos equipamentos necessários para a construção dos painéis solares é totalmente controlável utilizando as formas de controles existentes atualmente.
  • As centrais necessitam de manutenção mínima.
  • Os painéis solares são a cada dia mais potentes ao mesmo tempo que seu custo vem decaindo. Isso torna cada vez mais a energia solar uma solução economicamente viável.
  • A energia solar é excelente em lugares remotos ou de difícil acesso, pois sua instalação em pequena escala não obriga a enormes investimentos em linhas de transmissão.
  • Em países tropicais, como o Brasil, a utilização da energia solar é viável em praticamente todo o território, e, em locais longe dos centros de produção energética, sua utilização ajuda a diminuir a demanda energética nestes e consequentemente a perda de energia que ocorreria na transmissão.
Desvantagens:
  • Um painel solar consome uma quantidade enorme de energia para ser fabricado. A energia para a fabricação de um painel solar pode ser maior do que a energia gerada por ele.[10]
  • Os preços são muito elevados em relação aos outros meios de energia.
  • Existe variação nas quantidades produzidas de acordo com a situação atmosférica (chuvas, neve), além de que durante a noite não existe produção alguma, o que obriga a que existam meios de armazenamento da energia produzida durante o dia em locais onde os painéis solares não estejam ligados à rede de transmissão de energia.
  • Locais em latitudes médias e altas (Ex: Finlândia, Islândia, Nova Zelândia e Sul da Argentina e Chile) sofrem quedas bruscas de produção durante os meses de inverno devido à menor disponibilidade diária de energia solar. Locais com frequente cobertura de nuvens (Curitiba, Londres), tendem a ter variações diárias de produção de acordo com o grau de nebulosidade.
  • As formas de armazenamento da energia solar são pouco eficientes quando comparadas, por exemplo, aos combustíveis fósseis (carvão, petróleo e gás), a energia hidroelétrica (água) e a biomassa (bagaço da cana ou bagaço da laranja).